

ZIER Pumpen und Anlagen AG 9323 Steinach

Tel. 071 446 00 00 Fax 071 446 00 05

Allgemeines

Druckschwankungen in hydraulischen Rohrnetzen und Armaturen führen zu ungleichmäßiger Betriebsweise der nachgeschalteten Verbraucher und können bei großer Amplitude der Schwankungen sogar Rohrnetze zerstören oder sie aus den Verankerungen reißen. Kritisch wird eine Pulsationsfrequenz in der Resonanz des Rohrnetzes. Eine ungedämpfte Steigerung der Druckspritzen hat unabsehbare Schäden zur Folge.

Naturgemäß entstehen bei Kolben- und Membrandosierpumpen Pulsationen, deren Heftigkeit mit der Leitungslänge wächst. Je kleiner der Leitungsdurchmesser ist, um so größer die Druckspitzen. Darum sollten bei der Planung von Dosieranlagen, besonders wenn eine starre Verrohrung und kein elastischer Schlauch gewählt wird, Pulsationsdämpfer vorgesehen werden. Sie sind eine ebenso einfache wie wirksame Gegenmaßnahme schwellende Drükke auf ein unschädliches Maß zu glätten.

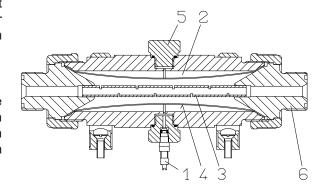
Die Funktion basiert auf der energieumsetzenden Kompression und Expansion eines Gaspolsters. Dabei wird während des Druckanstieges ein Teil des zu fördernden Mediums gespeichert und bei Drucksenkung wieder an das Rohrnetz abgegeben.

Unterschieden werden prinzipiell Pulsationsdämpfer **mit** und **ohne** Trennmembrane.

Bei Pulsationsdämpfern ohne Trennmembrane hat das Medium unmittelbare Berührung mit dem Gaspolster, welches durch die zuvor eingesperrte Druckluft gebildet wird. Die Druckluft wird nach Inbetriebnahme auf das dämpfende Volumen komprimiert. Da die Druckluft allmählich im Medium gelöst wird, muß von Zeit zu Zeit im drucklosen Zustand belüftet werden. Dieser Nachteil wird vermieden, wenn Pulsationsdämpfer mit Trennmembrane verwendet werden. Bei diesen wird das dämpfende Gaspolster durch eine elastische Membrane vom Fördermedium getrennt und dadurch vor Absorption geschützt.

Druckseite der Pumpe

Dosierpumpen erzwingen auf der Druckseite die Förderung mit ihrer gesamten Leistung. Je nach Leitungslänge und Armatureneigenarten können erhebliche Druckspitzen auftreten, die durch Pulsationsdämpfer zu glätten sind.


Saugseite der Pumpe

Die Flüssigkeitszufuhr auf der Saugseite muß sicherstellen, daß Flüssigkeit unverzüglich dem Saughub der Membrane oder des Kolbens folgen kann. Die Saughubbeschleunigung kann aber so groß sein, daß die Flüssigkeitsmasse der Saugleitung dem Hub nicht folgen kann. Es kommt dann zum Abreißen der Flüssigkeitssäule (Kavitation).

Pulsationsdämpfer als "Saugwindkessel", kurz vor dem Saugventil montiert, sorgen für einen gleichmäßigen Zulauf in der Saugleitung und stellen der Dosierpumpe das Fördermedium mit geringstem Druckverlust zu Verfügung.

Funktionsschema

Durchflußrichtung beliebig

- 1 Befüllventil
- 2 Gaspolster
- 3 Stützrohr
- 4 Trennmembrane
- 5 Manometeranschluß
- 6 Anschluß des Mediums

Pulsationsdämpfer mit Schlauchmembrane Typ PDS

(Gebrauchsmuster GM 80 11 452)

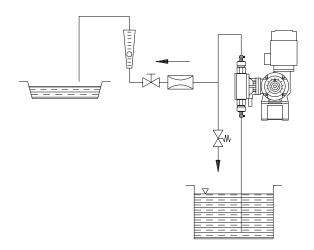
Der in dieser Druckschrift beschriebene Pulsationsdämpfer Typ PDS besitzt als Trennmembrane einen Schlauch, der konzentrisch durch ein zylindrisches Kunststoffgehäuse gezogen ist. Das Medium fließt innerhalb und das dämpfende Gaspolster befindet sich außerhalb des Schlauches, im Ringspalt zwischen Schlauch und Kunststoffgehäuse. Vorteil dieser Konzeption ist, daß der Pulsationsdämpfer aus diversen Kunststoffen gefertigt werden kann. Die Installation des PDS erfolgt möglichst nahe der Pumpe sowohl über ein T-Stück einseitig wie auch direkt vom Medium durchströmt in der Förderleistung integriert, dabei kann der Typ PDS 80 direkt auf das Druckventil montiert werden.

Zur Befüllung wird Druckluft verwendet.
Auf keinen Fall darf Sauerstoff verwendet werden.

Auf **keinen** Fall darf **Sauerstoff** verwendet werden. Der Druck des Gaspolsters wird während der Befüllung nach BW 1 27 01/1 mit einem Manometer am Befüllgerät überwacht. Es ist ratsam, auch für den Betrieb ein Manometer direkt am PDS vorzusehen.

Größenbestimmung des Pulsationsdämpfers

Wenn der Pulsationsdämpfer verwendet wird, um nachteilig oder zerstörend wirkende Druckspitzen zu reduzieren, reicht es aus, die Größe so zu wählen, daß die verbleibende Druckschwankung etwa +/- 10 % des mittleren Betriebsdruckes ausmacht. Dieser Wert wurde in der Tabelle berücksichtigt. Die in der Tabelle zugrundeliegende Fördermenge je Hub ist den Datenblättern der Dosierpumpen zu entnehmen. Die Dämpfung ist um so besser, je größer der Pulsationsdämpfer ausgelegt ist.

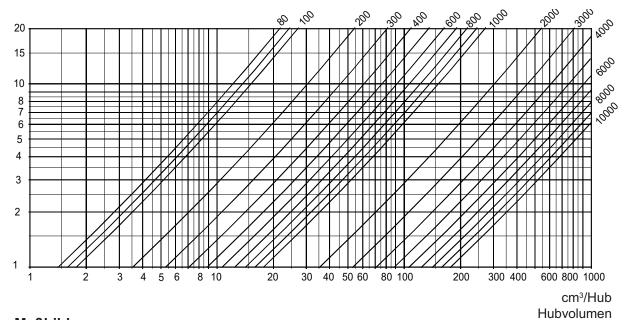

Тур	Hubvolumen ⁽¹⁾	zul. Betriebsdruck
	bis ml/Hub	[bar]
PDS 80	15	10
PDS 250	40	10
PDS 750	120	10
PDS 2500	400	10
PDS 7500	1200	4

(1) zutreffend für Restschwankung +/- 10% des Nenndruckes bei Einfachpumpen

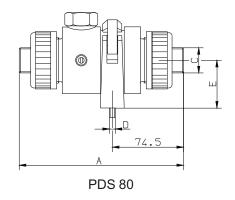
Vorspanndruck max. 6 bar Betriebsdruck max. 10 bar Temperatur max. 50 °C

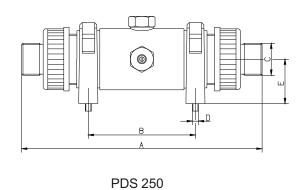
Dämpfung für Durchflußmessung

Wenn der Pulsationsdämpfer dazu verwendet werden soll, für einen Durchflußmesser eine gleichmäßige Strömung sicherzustellen, kann es notwendig sein, ein Drosselventil hinter dem Pulsationsdämpfer zu installieren. Das wird besonders dann erforderlich, wenn infolge relativ kurzer Leitungen bzw. bei freiem Auslauf ungenügender Gegendruck entsteht, um Flüssigkeit dämpfend im Pulsationsdämpfer zu speichern. Folgendes Schema zeigt die empfohlene Installation:

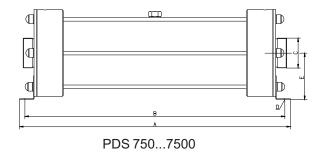

Diagramm zur Größenbestimmung

Das Diagramm zur Dimensionierung der Pulsationsdämpfer in Abhängigkeit vom Hubvolumen der Pumpe und der gewünschten Glättung des Volumenstroms bzw. der Druckschwankungen kann eine wertvolle Hilfe sein. Der tatsächliche Dämpfungseffekt hängt allerdings von unzähligen, nicht präzise erfaßbaren oder vorhersehbaren Parametern ab. Von Fall zu Fall können zur Lösung eines Dämpfungs-Problems noch gestalterische Änderungen der Anlage bzw. zusätzliche Armaturen erforderlich werden.

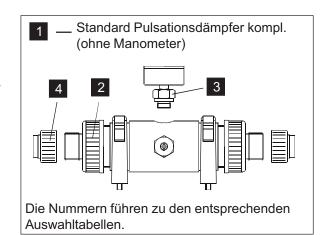

Diagramm zur Größenbestimmung


+/- % Druckschwankung bzw.
Dosierstromschwankungen um den Mittelwert

Größe des Pulsationsdämpfers Vo / cm³


Maßbilder

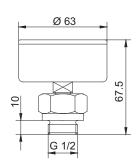
Maßtabelle


Тур	Maße						
	Α	В	С	D	Е		
PDS 80	172	-	G 3/4	M 6	50		
PDS 250	314	140	G 1 1/4	M 8	64		
PDS 750	363	347	G 1 1/4	ø 9	71,5		
PDS 2500	541	525	G 2	ø11	99,5		
PDS 7500	720	710	G 2 3/4	ø13	125,5		

Auswahltabellen

Um die anwendungsspezifisch optimale Version des PDS anbieten zu können, wurde dieser in die wichtigsten Funktionsgruppen gegliedert. Nach Bedarf wird der Pulsationsdämpfer anhand der Tabellen 2 bis 4 zusammengestellt. PDS aus unserem Standard-Programm können anhand der Tabelle 1 ausgewählt werden.

- 1 Standard Pulsationsdämpfer
- Pulsationsdämpfer (Grundgerät ohne Anschluß)
- 3 Manometer kpl.
- 4 Anschlüsse / alternativ 1x Blindstopfen

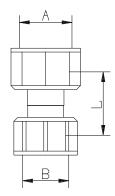

			1			
Тур	Werkstoff	d ₁ (Eing.)	d ₂ (Ausg.)	Hubvolumen (1)	PVC	PP
	Membrane			bis ml/Hub	Artikel-Nr.	Artikel-Nr.
PDS 80	Hypalon	G 5/8 i	d 6/12	15	12701007	-
PDS 80	Viton	G 5/8 i	d 6/12	15	12701010	-
PDS 80	Hypalon	G 3/4 i	d 6/12	15	12701049	1
PDS 80	Viton	G 3/4 i	d 6/12	15	12701055	1
PDS 80	Hypalon	d 6/12	d 6/12	15	12701169	-
PDS 80	Viton	d 6/12	d 6/12	15	12701170	-
PDS 250	Hypalon	d 20 i	d 20 i	40	12702085	12701085
PDS 250	Viton	d 20 i	d 20 i	40	12702097	12701097
PDS 750	Hypalon	d 20 i	d 20 i	120	12702171	12701171
PDS 750	Viton	d 20 i	d 20 i	120	12702172	12701172
PDS 2500	Hypalon	d 40 i	d 40 i	400	12702133	12701133
PDS 2500	Viton	d 40 i	d 40 i	400	12702180	12701180
PDS 7500	Hypalon	d 63 i	d 63 i	1200	12702145	12701145
PDS 7500	Viton	d 63 i	d 63 i	1200	12702146	12701148

⁽¹⁾ zutreffend für Restschwankung +/- 10% des Nenndruckes bei Einfachpumpen

			2			
Тур	Werkstoff	Anschluß	empf. für	zul. Betriebs-	PVC	PP
	Membrane	Grundgerät	Ø/DN	druck [bar]	Artikel-Nr.	Artikel-Nr.
PDS 80	Hypalon	G 3/4 a	16 / 10	10	32814	33297
PDS 80	Viton	G 3/4 a	16 / 10	10	32819	33298
PDS 250	Hypalon	G 1 1/4 a	25 / 20	10	33276	32815
PDS 250	Viton	G 1 1/4 a	25 / 20	10	33275	32820
PDS 750	Hypalon	G 1 1/4 a	25 / 20	10	33632	32816
PDS 750	Viton	G 1 1/4 a	25 / 20	10	33631	32821
PDS 2500	Hypalon	G 2 a	40 / 32	10	33634	32817
PDS 2500	Viton	G 2 a	40 / 32	10	33633	32822
PDS 7500	Hypalon	G 2 3/4 a	63 / 50	4	33636	32818
PDS 7500	Viton	G 2 3/4 a	63 / 50	4	34599	34615

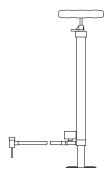
3								
Manometer komplett mit Anschluß								
Glyzerindämp	fung	ohne		mit				
Werkstoff der	Anschlußteile	PP	PVC	PP	PVC			
Meßbereich	0 6 bar	32949	35476	32948	35480			
	016 bar	32951	35478	32950	35477			

Beim Einsatz als Saugwindkessel kein Manometer verwenden!

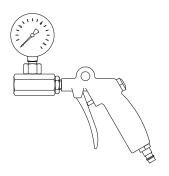

			4					A	В	
						Artik	el-Nr.		— da	
Тур	Abb.	D	di	da	L	PVC	PP	da	 	С
PDS 80	Α	G 3/4	4	6	24	19480	34846	l -} +°" .		. ı da ı
			6	8	30	28159	-			
			6	9	30	34926	34708			
			6	12	55	19175	-			
	В		6	12	30	23342	-			
	С		-	10	15	25167	-		F -1	
			-	12	15	27518	-	Schlauchklemm- Anschluß	Schlauchschellen- Anschluß	Einklebe- Anschluß
			-	16	17	25625	33793	7 ti loci il dio	71100111013	Ansomais
	D		-	G 1/4	20	25165	34676			
PDS 250	В	G 1 1/4	9	15	41	25921	-	C ₂		
PDS 750			16	26	50	25936	35694	2 1_ da _1	D	
	С		-	12	22	25923	-		Б	F
			-	16	22	27672	27664		— <mark>da</mark> ■	
			-	20	22	25937	35490		<u> </u>	
	D		-	G 3/8	28	25930	33797			┖╌┰╌┦
			-	G 1/2	22	25943	33798	<u> </u>		<u> </u>
	F		-	-	47	25956	-		TD	T D
PDS 2500	C ₂	G2	-	32	29	32932	-	 		 □
			-	40	29	32933	-	Einklebe-	Gewinde-	Flansch-
			-	50	90	32934	-	Anschluß	Anschluß	Anschluß
PDS 7500	C ₂	G 2 3/4	-	50	41	32935	-			
			-	63	41	32936	-			

4							
Тур	Blindstopfen						
	Maß A Artikel-N						
PDS 80	G 3/4	32941					
PDS 250	G 1 1/4	32947					
PDS 750	G 1 1/4	32947					
PDS 2500	G 2	32973					
PDS 7500	G 2 3/4	32974					

Wenn der Pulsationsdämpfer über ein T-Stück angeschlossen wird, ist ein Blindstopfen erforderlich.



Anschraubanschluß für PDS 80 für direkten Pumpenaufbau



Anschraubanschluß PDS 80 für direkten							
Pumpenaufbau							
Α	В	L	Artikel-Nummer				
G 3/4	G 5/8	32	32937				
G 3/4	G 3/4	30	32938				

Befülleinrichtungen

Befülleinrichtung für Druckluft bis 6 bar Versorgung mit Fußluftpumpe Artikel-Nr.: 12724332

Befülleinrichtung für Druckluft bis 6 bar Versorgung aus Druckluftnetz Artikel-Nr.: 12724321

Der kompetente Partner für Ihre Förderaufgaben...

ZIER Pumpen und Anlagen AG 9323 Steinach

Tel. 071 446 00 00 Fax 071 446 00 05 info@zier-anlagenbau.ch

